Bir üçlü monoidin Bruck-Reilly genişlemesi

نویسندگان

چکیده

In this study, Bruck-Reilly extension of a ternary monoid is defined. Additionally, some results about construction are given which belongs to one the classes semigroups; regular, inverse, orthodox and strongly regular.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic semigroups and Bruck–Reilly extensions

The interaction of automatic semigroups and Bruck–Reilly extensions is studied. It is proved that every automatic Bruck–Reilly extension has an automatic base semigroup. This result is then applied to answer negatively the question of Andrade et al. on whether automatic structures for Bruck–Reilly extensions of groups are characterized by the fellow traveller property. An example is exhibited t...

متن کامل

The Finite Bruck Loops *

We continue the work by Aschbacher, Kinyon and Phillips [AKP] as well as of Glauberman [Glaub1,2] by describing the structure of the finite Bruck loops. We show essentially that a finite Bruck loop X is the direct product of a Bruck loop of odd order with either a soluble Bruck loop of 2-power order or a product of loops related to the groups P SL2(q), q = 9 or q ≥ 5 a Fermat prime. The latter ...

متن کامل

Inner mappings of Bruck loops

K-loops have their origin in the theory of sharply 2-transitive groups. In this paper a proof is given that K-loops and Bruck loops are the same. For the proof it is necessary to show that in a (left) Bruck loop the left inner mappings L(b)L(a)L(ab)−" are automorphisms. This paper generalizes results of Glauberman[3], Kist[8] and Kreuzer[9].

متن کامل

Bruck Loops with Abelian Inner Mapping Groups

Bruck loops with abelian inner mapping groups are centrally nilpotent of class at most 2.

متن کامل

Bruck Nets, Codes, and Characters of Loops

Numerous computational examples suggest that if Nk−1 ⊂ Nk are (k− 1)and k-nets of order n, then rankp Nk − rankp Nk−1 ≥ n − k + 1 for any prime p dividing n at most once. We conjecture that this inequality always holds. Using characters of loops, we verify the conjecture in case k = 3, proving in fact that if p ∣∣∣∣n, then rankpN3 ≥ 3n− 2− e, where equality holds if and only if the loop G coörd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bal?kesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi

سال: 2021

ISSN: ['1301-7985', '2536-5142']

DOI: https://doi.org/10.25092/baunfbed.850352